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ABSTRACT

This study intends to evaluate and characterize the water quality of Vellayani Lake (VL), a tropical freshwater
body in Kerala, Southwest India. Comprehensive analyses of physico-chemical parameters were conducted in
surface water samples (n=13) during post-monsoon (January), pre-monsoon (May) and monsoon (July)
periods. Key parameters viz., temperature, pH, Electrical Conductivity, Total Dissolved Solids, Dissolved
Oxygen and nutrient concentrations were measured. The Water Quality Index (WQI) classification was
employed to assess water quality. WQI values ranged from ‘Excellent’ to ‘Poor’, with a general decline of
quality during post-monsoon. Additionally, a Random Forest based ensemble machine learning model was
applied to validate the WQI results, achieving high accuracy (R? = 0.96) and identified phosphate, Dissolved
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Oxygen, Electrical Conductivity and Total Dissolved Solids as key predictors. This integrative approach
provides a comprehensive understanding of the lake’s water quality dynamics, emphasizing the need for
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1. Introduction

Water quality, due to its dynamic nature, demands a
multidimensional assessment strategy. As highlighted by
Vasistha and Ganguly, 2020 and Naderian et al., 2024, a
holistic evaluation framework is essential for capturing the
inherent variability and long-term integrity of aquatic The
complexity of water quality assessment arises from the
necessity to measure a broad spectrum of parameters, as no
single metric can comprehensively represent the overall
condition of water bodies (Kwon and Jo., 2023).
Consequently, synthesizing these diverse parameters into
actionable insights presents a considerable challenge for
stakeholders (Zhi et al., 2024). To address this challenge, the
Water Quality Index (WQI) has been developed as a
sophisticated tool to provide an integrated assessment of
water quality (Mechal et al., 2024). WQI models employ
aggregation  functions that condense  extensive
spatiotemporal data into a singular, interpretable value ,
facilitating informed decision-making for policymakers and
stakeholders (Akhtar et al., 2021).
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spatially targeted interventions to reduce pollutant loads and stabilize the lake’s ecological function.
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However, the efficacy of WQI tools is contingent upon the
availability of comprehensive water quality data. This data
typically includes measurements of parameters such as pH,
Dissolved Oxygen, Chemical Oxygen Demand, Electrical
Conductivity, phosphorus etc. that require laboratory
analysis, creating a significant barrier to timely and effective
ecosystem management (Aldrees et al., 2022). Traditional
WQI approaches, which assign weighted scores to
individual water quality parameters, often encounter issues
of complexity and uncertainty (Jha et al., 2020).
Multivariate statistical methodologies, including principal
component analysis, factor analysis, discriminant analysis,
and cluster analysis have been employed to elucidate
patterns in water quality data (Li et al., 2018; Sukanya and
Sabu, 2020; Horvat et al., 2021).
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Nonetheless, interpreting the complex interrelationships
among multiple water quality parameters remains arduous
without robust techniques. Advanced statistical techniques,
while capable of handling certain uncertainties and
improving accuracy, often struggle with high-dimensional
data, non-linear relationships, and the significant
computational  resources required, limiting their
effectiveness in providing practical conclusions (Ahmed et
al., 2019).

Recent advances in machine learning (ML) offer promising
tools to enhance the accuracy and depth of water quality
assessments (Sukanya and Sabu, 2023). To enhance the
realistic assessment of water bodies, it is imperative to
integrate WQI models with advanced machine learning
algorithms (Lap et al.,, 2023). This integration offers a
practical and economical solution, reducing the challenges
associated with water quality sampling and costs of labour
and equipment, while also advancing traditional WQI
models towards improved applicability.

The Random Forest model, an ensemble learning method
that aggregates decision trees, is particularly well-suited for
handling high-dimensional datasets and optimizing WQI
models (Sukanya and Sabu, 2023; Talukdar et al., 2024).
Focusing on Vellayani Lake (VL) in Southwest India, this
research utilizes a Water Quality Index (WQI) model
optimized with a Random Forest algorithm, aiming for a
precise water quality evaluation. This innovative approach
seeks to develop a cost-effective and efficient strategy for
improving WQI, thereby providing critical support for water
environment management decisions and demonstrating the
profound potential of machine learning technologies in
addressing complex environmental challenges.

2. Study Area

Vellayani Lake (VL), the second largest freshwater body in
Kerala, Southwest India, spans approximately 3.15 km in
length and covers an area of about 2.25 km?. Situated around
15 km from Thiruvananthapuram city (N. Lat. 08.45°; E.
Long. 76.98°), the lake lies roughly 4 km inland and runs
parallel to the coastline, exhibiting an elongated, hammer-
like shape with a general north—south orientation. Its
catchment area extends over 38 km? (Fig. 1).Geologically,
the lake basin consists predominantly (about 90%) of
Precambrian crystalline basement rocks and Tertiary
sediments. The eastern and southwestern zones are
primarily composed of Precambrian formations, including
khondalites.

The northeastern head region is characterized by rocks such
as charnockite, charnockitic gneiss, and hypersthene-
diopside gneiss (Banerji et al., 2021). Quaternary deposits
dominate the northwestern area, while Tertiary sediments
occur in the southern part of the basin. From a
geomorphological perspective, Vellayani Lake is classified
as a lowland lake (elevation between 10 and 100 meters),
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featuring ridge tops and moderate slopes. The eastern region
contains distinct valleys, while the western part displays a
more undulating terrain. Notably, the northern edge of the
lake is predominantly used for agricultural irrigation.

3. Materials and Methods

Water quality data were collected from 13 monitoring
stations around a tropical lake in Kerala, during three
distinct seasons: post-monsoon (January), pre-monsoon
(May) and monsoon (July). Water quality in India is
primarily regulated by the Bureau of Indian Standards (BIS
10500, 2012) and Central Pollution Control Board (CPCB)
standards. In this study, we evaluated water quality using 14
key parameters, chosen based on the regulatory benchmarks
provided by these Indian standards as well as relevant
international criteria (WHO, 2022). Water quality
parameters including pH, electrical conductivity (EC), total
dissolved solids (TDS), alkalinity, dissolved oxygen (DO),
chloride, hardness, calcium, magnesium, sodium,
potassium, ammonia, nitrate, and phosphate were measured
(Table 1) and used to compute the Water Quality Index
(WQI). The relative weight (RW) assigned to each WQ
parameter was determined using equation:

_ AW;
- n
Zi:l AW,

RW

(Eq.1)

where RW denotes relative weight, AW is assigned weight
of i parameter, n represents the total number of parameters
involved in assessment.

To compute the quality rating scale (Qi) for each parameter
- excluding pH and DO, the following equation was used:

Q= (£) x100 (Eq. 2)

In this context, Ci is the Observed concentration of i
parameter, Si corresponds to its Standard permissible value.

For parameters viz., pH and DO, which have defined ideal
values, a modified version of the quality rating formula was
applied:
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Fig. 1. Spatial map illustrating
sampling points.

Q; = (%) x 100

v

(Eq. 3)

where V; refers to Ideal reference value which is taken as 7.0
for pH and 14.6 mg/L for DO.
Next, the sub-index (SI;) for each parameter was evaluated
by multiplying its relative weight with respective quality
rating:
The overall Water Quality Index (WQI) was then obtained
by summing all individual sub-indices:

wQIl = ¥, S (Eq. 5)
The assigned and relative weights for each parameter are
provided in Table 2.
The WQI values were categorized into the following
classes: “Excellent” (0-25), “Good” (26-50), “Poor” (51-75)
and “Very Poor” (76-100), “Unsuitable” (> 100) (Monira et
al., 2024).
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the location of Vellayani Lake and corresponding

3.1 Machine Learning Approach
Random Forest model training and evaluation

To comprehensively evaluate water quality trends and
corroborate the outcomes of the Water Quality Index (WQI),
a Random Forest (RF) model was implemented. Recognized
for its ability to manage intricate relationships among
numerous variables, this ensemble-based machine learning
approach consolidates outputs from a collection of decision
trees. This aggregation minimizes the risk of overfitting and
improves the overall predictive performance of the model
(Bakir et al., 2024).

Data Preparation: A data frame was created with the water
quality data for the three seasons as predictors and the WQI
categories as the response variable (Table 3). This method
allows for capturing seasonal variations and their impact on
water quality. The preprocessing of actual Water Quality
Index (WQI) data aimed to refine the dataset for improved
accuracy in the RF model predictions. Initially, raw WQI
values were used as input. The first step in preprocessing
involved data cleaning to rectify inconsistencies and address
missing values, ensuring the integrity and completeness of
the dataset.
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Subsequently, normalization techniques were applied to
standardize the variables, mitigating potential biases
introduced by varying measurement scales. This
normalization step was crucial in harmonizing the input
features for the RF model, facilitating more accurate
predictions by minimizing the influence of outliers and
scaling differences among parameters. Moreover,
exploratory data analysis techniques were employed to
identify correlations and interactions among the water
quality variables, guiding feature selection and ensuring that
the most informative parameters were retained for model
training. By systematically preparing the actual WQI data
through these preprocessing steps, the RF model was primed
to capture nuanced relationships and variations in water
quality, thereby enhancing its predictive performance during
different seasons and environmental conditions.

Model Training: The Random Forest model was developed
using the Random Forest package in R, incorporating cross-
validation (CV) to ensure reliable performance evaluation.
This validation approach reduces the likelihood of
overfitting and yields a more generalized estimate of the
model’s predictive capability. As an ensemble learning
method, Random Forest strengthens both the stability and
accuracy of predictions by combining the outputs of
numerous decision trees, thereby improving overall model
robustness.

Cross-Validation: A 5-fold cross-validation (CV) strategy
was employed to resample the dataset, enabling a reliable
and unbiased assessment of model performance. The data
were partitioned into five subsets with sample sizes of 11, 9,
10, 10, and 12, respectively. Each subset was used once as a
validation set while the remaining folds served as the
training set in an iterative manner. This approach, combined
with hyperparameter tuning, contributed to improved
generalization and optimized the model’s performance
across varying data partitions.

Hyperparameter Tuning: Model tuning involved testing
multiple mtry values, controlling the number of features
sampled per split, to identify the configuration yielding the
best predictive accuracy. Hyperparameter optimization was
conducted to fine-tune the Random Forest model’s
parameters. Grid search combined with cross-validation was
utilized to identify the optimal set of hyperparameters,
ensuring the model’s robustness and performance across
various scenarios.

IncNodePurity Analysis: The Random Forest model’s
feature importance was quantified using the IncNodePurity
metric, which assesses the purity gain achieved by each
variable at each split in the decision trees.
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Variables exhibiting higher IncNodePurity scores were
identified as having greater importance in predicting the
target outcome, specifically the Water Quality Index (WQI)
categories. This analysis provided insights into the relative
importance of water quality parameters, highlighting critical
factors driving water quality variations in the study area.

3.2 Model evaluation:

Performance Metrics: The Random Forest model's
performance was comprehensively assessed using accuracy,
Kappa statistics, MAE, RMSE, and R? metrics across
different mtry values. Evaluating model performance with
multiple metrics provides a comprehensive view of the
model’s predictive power and reliability.

Prediction: The trained Random Forest model was applied
to classify the Water Quality Index (WQI) categories based
on the input data, enabling a comprehensive evaluation of
water quality conditions. Predictive modeling allows for
proactive management strategies by forecasting water
quality trends.

4. Results and Discussion
4.1 Water Quality Index (WQI) classification

The statistical summary of various water quality parameters
analyzed are provided in Table 1. Table 3 displays the
calculated WQI values and Supplementary Tables S1, S2,
S3 shows the various physico-chemical data from which
WQI values were estimated for surface water samples from
the study area. During the post-monsoon period (January),
WQI values ranged from 20.79 to 70.23 (mean = 38.95).
Around 61.54% of the samples fell into the ‘Good’ category,
and two stations, around 15.38%, were classified as ‘Poor’
while 23.08% were ‘Excellent’. The highest WQI value of
70.23 was recorded at station V7, indicating the most
degraded water quality in this season. During the pre-
monsoon season (May), Water Quality Index values ranged
from 22.35 to 63.79, with a mean of 39.87, indicating
generally improved water conditions compared to
measurements from the post-monsoon phase. This variation
in water status is likely influenced by multiple
environmental factors, particularly the decrease in surface
runoff and the diminished effect of dilution. A significant
portion of the samples (69.23%) fell within the ‘Good’
classification, while 23.08% were categorized as
‘Excellent’. This distribution indicates that pre-monsoon
hydrological conditions tend to favor higher water quality,
possibly due to the reduced influx of nutrients and pollutants
typically transported by runoff.
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During the monsoon season (July), WQI values ranged from
23.46 to 62.79 (mean = 40.29). This period showed a mixed
trend in water quality, with some locations experiencing a
slight improvement and others a decline. However, most of
the samples, i.e., 76.92%, fell under the ‘Good’ category,
and 15.38% were found to be in the ‘Excellent’ category.

Notably, this period had a higher percentage of locations
classified under excellent water quality compared to others.
The highest WQI value recorded was 62.79 at station V10
from the northern part of the lake, indicating the influence
of increased nutrient runoff during heavy rainfall. The
improved mean water quality during the pre-monsoon
period, despite potential nutrient concentration, can be
attributed to reduced external nutrient loading from surface
runoff. In contrast, the monsoon period exhibits mixed water
quality dynamics due to variable rainfall intensities. High
rainfall in some areas dilutes nutrients, whereas localized
runoff and point-source pollution, particularly at station
V10, contribute to nutrient enrichment. Seasonal trends in
WQI indicate that both pre-monsoon and monsoon periods
generally support better water quality than the post-
monsoon season, as reflected in higher percentages of
samples in the ‘Good’ and ‘Excellent’ categories. However,
the post-monsoon period shows the most degraded
conditions, likely due to residual nutrient buildup and
reduced dilution. The higher percentage of ‘Poor’ water
quality samples (15.38%), suggests localized issues driven
by nutrient-laden groundwater discharge from monsoon-
recharged aquifers, compounded by reduced flushing and
stagnant conditions.

These findings highlight the interplay between groundwater
discharge and surface runoff as critical regulators of lake
water quality across seasons, calling for strategic monitoring
and mitigation efforts tailored to post-monsoon conditions.
The mean WQI values across all seasons further highlight
the spatial variability in water quality. Station V3 from
northern part had the lowest mean WQI of 22.9, indicating
the best water quality among the sampled locations.
Conversely, station V2 had the highest mean WQI of 62.1,
reflecting consistent water quality issues. The average WQI
values for post-monsoon, pre-monsoon and monsoon
periods were 38.7, 39.2, and 39.7 respectively (Fig. 2). Ina
study by Singh et al. (2016), ‘Poor’ and ‘Unfit’ category
samples were observed during the post-monsoon period in
an urban lake in Bhopal, India. Similarly, high WQI values
(> 100) indicating low water quality were observed during
post-monsoon in Hebbal Lake, South India. Higher WQI
values observed during monsoon are likely the result of
pollutant influx carried by heavy rainfall, which transports
contaminants into the lake system. As water levels decline,
these substances tend to settle and become more
concentrated. In relatively shallow lakes, the post-monsoon
period is often marked by sediment disturbance and
resuspension, which acts as a key internal source of
contamination (Yin et al., 2024).
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In contrast, the pre-monsoon phase is characterized by
limited surface runoff, a greater influence of groundwater
inputs, and enhanced natural cleansing mechanisms within
the lake; all of which contribute to better overall water
conditions. These findings suggest the need for targeted
management strategies, especially during dry seasons to
mitigate nutrient enrichment and preserve water quality.

4.2 Ensemble machine learning and WQI

To enhance the understanding of water quality patterns and
validate the WQI results, Random Forest, a robust ensemble
machine learning technique was chosen for its ability to
handle complex interactions between multiple water quality
parameters and provide reliable predictions. The study
involved rigorous preprocessing of a comprehensive dataset
encompassing critical water quality parameters such as pH,
electrical conductivity (EC), total dissolved solids (TDS),
dissolved oxygen (DO) and concentrations of nutrients like
ammonia, nitrate, and phosphate. The dataset was split into
training (70%) and testing (30%) sets to ensure unbiased
evaluation. These parameters served as input features for
training a Random Forest model, which was meticulously
optimized through a grid search with cross-validation. This
approach ensured that hyperparameters, including the
number of trees (mtry), maximum depth, and minimum
samples per leaf, were tuned to maximize predictive
accuracy. The model’s performance was evaluated using
metrics like Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R-squared (R?). Utilizing 5-fold
cross-validated resampling, the model was systematically
evaluated across various mtry values, revealing a robust
performance landscape. Notably, the model achieved its
pinnacle with mtry = 2, attaining an impressive accuracy
with an average Mean Absolute Error (MAE) of
approximately 2.24 units, Root Mean Squared Error
(RMSE) of 2.93 units, and a coefficient of determination (R-
squared) of 0.96, indicating robust agreement between
predicted and observed values across varied environmental
conditions (Fig. 3).

Furthermore, Cohen’s kappa predicted and observed
classifications beyond chance, substantiated the model’s
reliability. Our findings are in line with those of Zhang et
al., 2024, who also utilized an RF model for optimizing WQI
predictions, achieving an R? of 0.98. This high accuracy
reinforces the effectiveness of RF models in environmental
monitoring and their capability to handle complex,
nonlinear interactions in water quality data.The predictive
capabilities of the model were reflected by its ability to
forecast higher water quality index values-indicative of
poorer water quality at specific stations (V2, V7, and V10).
These predictions aligned closely with actual WQI
calculations, validating the model’s efficacy in capturing
real-world variations and trends.
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Temporal analysis further elucidated seasonal patterns,
revealing a consistent deterioration in water quality post-
monsoon, alongside modest improvements during pre-
monsoon and monsoon periods. These findings correlated
well with observed fluctuations in nutrient levels and runoff
dynamics, emphasizing the model’s robustness in capturing
complex environmental interactions.

Performance evaluation of the model was further supported
by metrics such as Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and the coefficient of determination
(R?), which provided a detailed assessment of predictive
reliability. For both pre-monsoon and post-monsoon
periods, the model yielded an MAE of 2.54 and an RMSE
of 3.32, suggesting a high level of predictive accuracy
within acceptable error thresholds for water quality
evaluation. These results demonstrate the model’s
effectiveness in estimating the WQI while accounting for
the natural variability associated with water quality
conditions. During the monsoon season, the RF model
excelled with high R? value of 0.96, similar to other seasons,
but with notably lower MAE of 1.64 and RMSE of 2.16.
These reduced errors suggested the model’s enhanced
precision in predicting monsoon WQI values, capturing
seasonal variations more effectively. Moreover, the high R?
value highlighted the model’s capability to explain 96% of
the variance in WQI values, reinforcing its reliability for
predictive applications. Misclassifications were minimal
and primarily occurred near category boundaries, where
WQI values were close to threshold limits. The model’s
ability to highlight stations with persistently high WQI
values, such as V2 (northern part of VL), V7 (central part),
and V10 (southern part), aligns with the manual WQI
calculations, suggesting these locations require targeted
management interventions.

The integration of Random Forest based ensemble machine
learning techniques provided a powerful tool for water
quality assessment, offering detailed insights and
reinforcing the empirical findings. A notable advantage of
the Random Forest (RF) algorithm lies in its capacity to
evaluate the relative contribution of individual water quality
parameters. The feature importance analysis generated by
the RF model offers a reliable means to rank and highlight
parameters that play a significant role in determining overall
water quality, thereby aiding in more targeted and effective
assessments. The feature importance analysis identified
phosphate and Dissolved oxygen (DO) as the most
significant predictors, highlighting its crucial role in water
quality assessment. Certain parameters were found to be
exhibiting substantial importance, quantified by their
IncNodePurity values. For instance, phosphate and DO
emerged as highly influential with IncNodePurity values of
156.92 and 121.18 respectively (Fig. 4). This highlights the
crucial role of these parameters in aquatic ecosystems where
oxygen availability and phosphate loading directly impacts
biotic communities and biochemical processes.
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The prominence of pH with an IncNodePurity of 69.39
signifies its pivotal role in regulating chemical reactions,
nutrient availability, and overall water chemistry. Similarly,
high IncNodePurity values for sodium (66.84), chloride
(59.48) and TDS (61.20) highlight their significant
contributions to salinity, ion balance, and pollutant load in
water bodies, crucial for assessing water quality and
ecological health. Parameters such as calcium (54.80), and
hardness (51.62) also demonstrated considerable
importance, reflecting their roles in nutrient dynamics,
mineral content, and water hardness, respectively. Their
elevated IncNodePurity values underscore their influence on
aquatic habitats and the potential implications for ecosystem
integrity and water resource management. Alqahtani et al.
(2022) reported that ensemble learning approaches such as
RF deliver higher predictive accuracy and consistency in
estimating water quality parameters, achieving an
impressive coefficient of determination (R?) of 0.98. This
performance notably surpasses that of standalone machine
learning models, including gene expression programming
(GEP) and artificial neural networks (ANN). Supporting
this, Sakaa et al. (2022) highlighted the advantages of RF
over hybrid optimization techniques, emphasizing its
efficiency, lower computational demand, and suitability for
cost-effective water quality monitoring, making it a valuable
tool for advancing sustainable water resource management.
In another recent research, the efficacy of ensemble learning
models, particularly Random Forest (RF), was highlighted
in customizing the water quality index (WQI) to suit specific
environmental contexts and management needs (Lee et al.,
2023).

However, to reduce overfitting in Random Forest (RF)
models, optimizing tree depth, increasing minimum samples
per leaf, conducting careful feature selection to exclude
irrelevant variables, employing cross-validation, and
monitoring ensemble size are critical strategies to enhance
model generalization and performance (Huang and Boutros,
2016; Ahmad et al., 2018; Huang et al., 2021; Bakir et al.,
2024).

5. Conclusions

The assessment of water quality in Vellayani Lake revealed
pronounced seasonal and spatial variability, strongly shaped
by monsoonal influences. While the monsoon and pre-
monsoon periods exhibited better water quality in general,
the post-monsoon period stood out due to higher incidence
of ‘Poor’ water quality based on water quality index (WQI),
particularly at localized sites. Employing a Random Forest
based ensemble machine learning model offered reliable
support for the WQI outcomes. The model achieved a strong
predictive performance (R? = 0.96), successfully modeling
the nonlinear relationships among multiple water quality
parameters.


https://doi.org/10.5281/zenodo.18587113

JOURNAL OF INTEGRATED EARTH SCIENCES

https://doi.org/10.5281/zenodo. 18587113 GEOLOGICAL SOCIETY OF KERALA

Sabu et al., 2025

Table 1. Statistical Summary of Physico-chemical Parameters during January, May and July

January (Post-monsoon) May (Pre-Monsoon) July (Monsoon)
;l('). Parameter Min Max Mean SD Min Max Mean SD Min Max Mean SD
1 | Temp. (°C) 27 29 | 2846 | 0.66 | 30 32 3131 | 0.75 26 27 266 | 048
2 pH 57 | 69 | 6.48 033 | 6.1 69 | 66 0.24 6 6.5 6.2 0.18
127. | 132. 150.
3 EC (uS) . S| 13024 | 154 | 1349 | 14185 | 5.04 | 1244 | 1433 | 13144 | 4.79
4 TDS (mg/L) 6‘;‘1 6%5 66.69 134 | 66.23 Z“ 69.15 | 1.41 63 7177 | 6551 | 227
5 Alkalinity 25 35 | 3146 | 3.07 |25 40 3385 | 545 30 38 3338 | 2.81
(mg/L)
6 DO (mg/L) 3 8 | 573 167 | 3 7 543 0.99 4 8.2 618 | 140
7 Chloride 38 55 | 4254 | 441 | 32 46 3738 | 3.75 27 39 3223 | 334
(mg/L)
8 Hardness 15 41 | 28.69 926 | 14 40 26.08 | 7.79 14 40 25.84 | 7.30
(mg/L)
9 Calcium 4 75 | 555 111 | 4 75 5.18 1.05 3 6.2 456 | 1.01
(mg/L)
jo | Magnesium 24 | 86 | 562 217 | 24 83 | 5.09 1.76 3 73 450 | 133
(mg/L)
j1 | Sodium 13.6 | 184 | 16.85 120 | 124 172 | 1567 | 131 11.4 16.7 1468 | 137
(mg/L)
jp | Potassium 25 | 45 |3.16 053 | 25 4 3.26 0.39 2 4 3.00 | 0.61
(mg/L)
13 | Ammonia 0.04 | 031 | 0.11 0.09 | 0.04 031 | 0.11 0.08 0.03 0.94 023 | 032
(mg/L)
14 | Nitrate 1.03 | 1.12 | 1.06 0.03 | 1.03 112 | 1.06 0.02 0.93 1.03 098 | 0.03
(mg/L)
15 | Phosphates 100 o4 | 0151 0.09 | 0.04 04 | 015 0.09 0.03 0.99 034 | 036
(mg/L)
Table 2. Assigned Weights and Relative Weights of Table 3. Calculated Water Quality Index (WQI) values for
Parameters for Water Quality Index various seasons
Parameter Assigned Relative Site | Post- Pre- Monsoon | Mean
Weights Weights Monsoon | Monsoon WQI
pH 07 0.069 VI | 2412 30.46 29.79 28.12
TDS 3 0.077 V2 | 60.12 63.79 62.46 62.12
EC 35 0.089 V3 20.79 22.35 25.68 22.94
Alkalinity 3 0.077 V4 32.79 33.46 34.68 33.64
V5 25.57 22.68 23.46 23.9
DO 4 0.102
- V6 40.68 45.12 50.79 45.53
Chloride 3 0.077
V7 70.23 60.46 50.12 60.27
Hardness 3 0.077
. V8 37.46 34.79 33.46 35.23
Calcium 3 0.077
v i V9 28.35 30.68 32.12 30.38
agnesium _ | 3 0.077 V10 | 55.68 6035 62.79 59.6
Sodium 3 0.077
Dot V11 | 35.79 36.12 40.57 37.49
otassium | 1 0.026 V12 [ 35.79 38.23 37.57 372
Ammonia 1 0.026
oo V13 | 35.46 31.79 32.35 332
ttrate 1 0.026 Min | 20.79 2235 23.46 22.94
Phosphate 5 0.128 Max | 70.23 63.79 62.79 62.12
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Key influencing factors such as phosphate, dissolved
oxygen, electrical conductivity, and total dissolved solids
were identified, consistent with observed field data. The
model’s predictions of higher WQI values at stations V2
(northern part of VL), V7 (central), and V10 (southern part)
corroborated the manual calculations, highlighting areas
with persistent water quality issues. By combining
conventional WQI assessment with machine learning
validation, the study delivered an integrated perspective on
water quality dynamics in Vellayani freshwater Lake. It
highlighted specific periods and hotspots that warrant
targeted management efforts to address nutrient loading and
water quality deterioration. These findings reinforce the
need for sustained monitoring and the use of advanced
analytical approaches to support the long-term sustainability
of freshwater ecosystems.
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