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1. Introduction 

Water quality, due to its dynamic nature, demands a 
multidimensional assessment strategy. As highlighted by 
Vasistha and Ganguly, 2020 and Naderian et al., 2024, a 
holistic evaluation framework is essential for capturing the 
inherent variability and long-term integrity of aquatic The 
complexity of water quality assessment arises from the 
necessity to measure a broad spectrum of parameters, as no 
single metric can comprehensively represent the overall 
condition of water bodies (Kwon and Jo., 2023). 
Consequently, synthesizing these diverse parameters into 
actionable insights presents a considerable challenge for 
stakeholders (Zhi et al., 2024). To address this challenge, the 
Water Quality Index (WQI) has been developed as a 
sophisticated tool to provide an integrated assessment of 
water quality (Mechal et al., 2024). WQI models employ 
aggregation functions that condense extensive 
spatiotemporal data into a singular,  interpretable value ,  
facilitating  informed decision-making for policymakers and  
stakeholders (Akhtar et al., 2021).  
 

However, the efficacy of WQI tools is contingent upon the 
availability of comprehensive water quality data. This data 
typically includes measurements of parameters such as pH, 
Dissolved Oxygen, Chemical Oxygen Demand, Electrical 
Conductivity, phosphorus etc. that require laboratory 
analysis, creating a significant barrier to timely and effective 
ecosystem management (Aldrees et al., 2022). Traditional 
WQI approaches, which assign weighted scores to 
individual water quality parameters, often encounter issues 
of complexity and uncertainty (Jha et al., 2020). 
Multivariate statistical methodologies, including principal 
component analysis, factor analysis, discriminant analysis, 
and cluster analysis have been employed to elucidate 
patterns in water quality data (Li et al., 2018; Sukanya and 
Sabu, 2020; Horvat et al., 2021).  
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This study intends to evaluate and characterize the water quality of Vellayani Lake (VL), a tropical freshwater 
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provides a comprehensive understanding of the lake’s water quality dynamics, emphasizing the need for 
spatially targeted interventions to reduce pollutant loads and stabilize the lake’s ecological function. 
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Nonetheless, interpreting the complex interrelationships 
among multiple water quality parameters remains arduous 
without robust techniques. Advanced statistical techniques, 
while capable of handling certain uncertainties and 
improving accuracy, often struggle with high-dimensional 
data, non-linear relationships, and the significant 
computational resources required, limiting their 
effectiveness in providing practical conclusions (Ahmed et 
al., 2019).  
 
Recent advances in machine learning (ML) offer promising 
tools to enhance the accuracy and depth of water quality 
assessments (Sukanya and Sabu, 2023). To enhance the 
realistic assessment of water bodies, it is imperative to 
integrate WQI models with advanced machine learning 
algorithms (Lap et al., 2023). This integration offers a 
practical and economical solution, reducing the challenges 
associated with water quality sampling and costs of labour 
and equipment, while also advancing traditional WQI 
models towards improved applicability.  
 
The Random Forest model, an ensemble learning method 
that aggregates decision trees, is particularly well-suited for 
handling high-dimensional datasets and optimizing WQI 
models (Sukanya and Sabu, 2023; Talukdar et al., 2024). 
Focusing on Vellayani Lake (VL) in Southwest India, this 
research utilizes a Water Quality Index (WQI) model 
optimized with a Random Forest algorithm, aiming for a 
precise water quality evaluation. This innovative approach 
seeks to develop a cost-effective and efficient strategy for 
improving WQI, thereby providing critical support for water 
environment management decisions and demonstrating the 
profound potential of machine learning technologies in 
addressing complex environmental challenges. 
 
2. Study Area  

 
Vellayani Lake (VL), the second largest freshwater body in 
Kerala, Southwest India, spans approximately 3.15 km in 
length and covers an area of about 2.25 km². Situated around 
15 km from Thiruvananthapuram city (N. Lat. 08.45°; E. 
Long. 76.98°), the lake lies roughly 4 km inland and runs 
parallel to the coastline, exhibiting an elongated, hammer-
like shape with a general north–south orientation. Its 
catchment area extends over 38 km² (Fig. 1).Geologically, 
the lake basin consists predominantly (about 90%) of 
Precambrian crystalline basement rocks and Tertiary 
sediments. The eastern and southwestern zones are 
primarily composed of Precambrian formations, including 
khondalites.  

The northeastern head region is characterized by rocks such 
as charnockite, charnockitic gneiss, and hypersthene-
diopside gneiss (Banerji et al., 2021). Quaternary deposits 
dominate the northwestern area, while Tertiary sediments 
occur in the southern part of the basin. From a 
geomorphological perspective, Vellayani Lake is classified 
as a lowland lake (elevation between 10 and 100 meters),  

 
featuring ridge tops and moderate slopes. The eastern region 
contains distinct valleys, while the western part displays a 
more undulating terrain. Notably, the northern edge of the 
lake is predominantly used for agricultural irrigation. 
 
3. Materials and Methods 
 
Water quality data were collected from 13 monitoring 
stations around a tropical lake in Kerala, during three 
distinct seasons: post-monsoon (January), pre-monsoon 
(May) and monsoon (July).  Water quality in India is 
primarily regulated by the Bureau of Indian Standards (BIS 
10500, 2012) and Central Pollution Control Board (CPCB) 
standards. In this study, we evaluated water quality using 14 
key parameters, chosen based on the regulatory benchmarks 
provided by these Indian standards as well as relevant 
international criteria (WHO, 2022). Water quality 
parameters including pH, electrical conductivity (EC), total 
dissolved solids (TDS), alkalinity, dissolved oxygen (DO), 
chloride, hardness, calcium, magnesium, sodium, 
potassium, ammonia, nitrate, and phosphate were measured 
(Table 1) and used to compute the Water Quality Index 
(WQI). The relative weight (RW) assigned to each WQ 
parameter was determined using equation: 
 
 
𝑅𝑅𝑅𝑅 =  𝐴𝐴𝑊𝑊𝑖𝑖

∑ 𝐴𝐴𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1

       (Eq.1) 

 
 
where RW denotes relative weight, AW is assigned weight 
of ith parameter, n represents the total number of parameters 
involved in assessment. 
 
To compute the quality rating scale (Qi) for each parameter 
- excluding pH and DO, the following equation was used: 
 
 
𝑄𝑄𝑖𝑖 =  �𝐶𝐶𝑖𝑖

𝑆𝑆𝑖𝑖
�  × 100     (Eq. 2) 

 
 
In this context, Ci is the Observed concentration of ith 
parameter, Si corresponds to its Standard permissible value. 
 
For parameters viz., pH and DO, which have defined ideal 
values, a modified version of the quality rating formula was 
applied: 
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𝑄𝑄𝑖𝑖 =  �𝐶𝐶𝑖𝑖𝑉𝑉𝑖𝑖
𝑆𝑆𝑖𝑖𝑉𝑉𝑖𝑖

� × 100    (Eq. 3) 
 

where Vi refers to Ideal reference value which is taken as 7.0 
for pH and 14.6 mg/L for DO. 
Next, the sub-index (SIi) for each parameter was evaluated 
by multiplying its relative weight with respective quality 
rating:  
 

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑅𝑅𝑅𝑅 × 𝑄𝑄𝑖𝑖      (Eq. 4) 
 

The overall Water Quality Index (WQI) was then obtained 
by summing all individual sub-indices: 
 

𝑊𝑊𝑊𝑊𝑊𝑊 =  ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛
𝑖𝑖=1      (Eq. 5) 

 
The assigned and relative weights for each parameter are 
provided in Table 2.  
The WQI values were categorized into the following 
classes: “Excellent” (0-25), “Good” (26-50), “Poor” (51-75) 
and “Very Poor” (76-100), “Unsuitable” (> 100) (Monira et 
al., 2024).  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1 Machine Learning Approach 
 
Random Forest model training and evaluation 
 
To comprehensively evaluate water quality trends and 
corroborate the outcomes of the Water Quality Index (WQI), 
a Random Forest (RF) model was implemented. Recognized 
for its ability to manage intricate relationships among 
numerous variables, this ensemble-based machine learning 
approach consolidates outputs from a collection of decision 
trees. This aggregation minimizes the risk of overfitting and 
improves the overall predictive performance of the model 
(Bakır et al., 2024). 
 
Data Preparation: A data frame was created with the water 
quality data for the three seasons as predictors and the WQI 
categories as the response variable (Table 3). This method 
allows for capturing seasonal variations and their impact on 
water quality. The preprocessing of actual Water Quality 
Index (WQI) data aimed to refine the dataset for improved 
accuracy in the RF model predictions. Initially, raw WQI 
values were used as input. The first step in preprocessing 
involved data cleaning to rectify inconsistencies and address 
missing values, ensuring the integrity and completeness of 
the dataset.  
 
 
 

Fig. 1. Spatial map illustrating the location of Vellayani Lake and corresponding 
sampling points. 
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Subsequently, normalization techniques were applied to 
standardize the variables, mitigating potential biases 
introduced by varying measurement scales.  This 
normalization step was crucial in harmonizing the input 
features for the RF model, facilitating more accurate 
predictions by minimizing the influence of outliers and 
scaling differences among parameters. Moreover, 
exploratory data analysis techniques were employed to 
identify correlations and interactions among the water 
quality variables, guiding feature selection and ensuring that 
the most informative parameters were retained for model 
training. By systematically preparing the actual WQI data 
through these preprocessing steps, the RF model was primed 
to capture nuanced relationships and variations in water 
quality, thereby enhancing its predictive performance during 
different seasons and environmental conditions. 
 
Model Training: The Random Forest model was developed 
using the Random Forest package in R, incorporating cross-
validation (CV) to ensure reliable performance evaluation. 
This validation approach reduces the likelihood of 
overfitting and yields a more generalized estimate of the 
model’s predictive capability. As an ensemble learning 
method, Random Forest strengthens both the stability and 
accuracy of predictions by combining the outputs of 
numerous decision trees, thereby improving overall model 
robustness. 
 
Cross-Validation: A 5-fold cross-validation (CV) strategy 
was employed to resample the dataset, enabling a reliable 
and unbiased assessment of model performance. The data 
were partitioned into five subsets with sample sizes of 11, 9, 
10, 10, and 12, respectively. Each subset was used once as a 
validation set while the remaining folds served as the 
training set in an iterative manner. This approach, combined 
with hyperparameter tuning, contributed to improved 
generalization and optimized the model’s performance 
across varying data partitions. 
 
Hyperparameter Tuning: Model tuning involved testing 
multiple mtry values, controlling the number of features 
sampled per split, to identify the configuration yielding the 
best predictive accuracy. Hyperparameter optimization was 
conducted to fine-tune the Random Forest model’s 
parameters. Grid search combined with cross-validation was 
utilized to identify the optimal set of hyperparameters, 
ensuring the model’s robustness and performance across 
various scenarios. 
 
IncNodePurity Analysis: The Random Forest model’s 
feature importance was quantified using the IncNodePurity 
metric, which assesses the purity gain achieved by each 
variable at each split in the decision trees.  
 
 
 
 

 
Variables exhibiting higher IncNodePurity scores were 
identified as having greater importance in predicting the 
target outcome, specifically the Water Quality Index (WQI)  
categories. This analysis provided insights into the relative 
importance of water quality parameters, highlighting critical 
factors driving water quality variations in the study area. 
 
3.2 Model evaluation: 
 
Performance Metrics: The Random Forest model's 
performance was comprehensively assessed using accuracy, 
Kappa statistics, MAE, RMSE, and R2 metrics across 
different mtry values. Evaluating model performance with 
multiple metrics provides a comprehensive view of the 
model’s predictive power and reliability. 
 
Prediction: The trained Random Forest model was applied 
to classify the Water Quality Index (WQI) categories based 
on the input data, enabling a comprehensive evaluation of 
water quality conditions. Predictive modeling allows for 
proactive management strategies by forecasting water 
quality trends. 
 
4. Results and Discussion 
 
4.1 Water Quality Index (WQI) classification 
 
The statistical summary of various water quality parameters 
analyzed are provided in Table 1. Table 3 displays the 
calculated WQI values and Supplementary Tables S1, S2, 
S3 shows the various physico-chemical data from which 
WQI values were estimated for surface water samples from 
the study area. During the post-monsoon period (January), 
WQI values ranged from 20.79 to 70.23 (mean = 38.95). 
Around 61.54% of the samples fell into the ‘Good’ category, 
and two stations, around 15.38%, were classified as ‘Poor’ 
while 23.08% were ‘Excellent’. The highest WQI value of 
70.23 was recorded at station V7, indicating the most 
degraded water quality in this season. During the pre-
monsoon season (May), Water Quality Index values ranged 
from 22.35 to 63.79, with a mean of 39.87, indicating 
generally improved water conditions compared to 
measurements from the post-monsoon phase. This variation 
in water status is likely influenced by multiple 
environmental factors, particularly the decrease in surface 
runoff and the diminished effect of dilution. A significant 
portion of the samples (69.23%) fell within the ‘Good’ 
classification, while 23.08% were categorized as 
‘Excellent’. This distribution indicates that pre-monsoon 
hydrological conditions tend to favor higher water quality, 
possibly due to the reduced influx of nutrients and pollutants 
typically transported by runoff.  
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During the monsoon season (July), WQI values ranged from 
23.46 to 62.79 (mean = 40.29). This period showed a mixed 
trend in water quality, with some locations experiencing a 
slight improvement and others a decline. However, most of 
the samples, i.e., 76.92%, fell under the ‘Good’ category, 
and 15.38% were found to be in the ‘Excellent’ category.  
 
Notably, this period had a higher percentage of locations 
classified under excellent water quality compared to others. 
The highest WQI value recorded was 62.79 at station V10 
from the northern part of the lake, indicating the influence 
of increased nutrient runoff during heavy rainfall. The 
improved mean water quality during the pre-monsoon 
period, despite potential nutrient concentration, can be 
attributed to reduced external nutrient loading from surface 
runoff. In contrast, the monsoon period exhibits mixed water 
quality dynamics due to variable rainfall intensities. High 
rainfall in some areas dilutes nutrients, whereas localized 
runoff and point-source pollution, particularly at station 
V10, contribute to nutrient enrichment. Seasonal trends in 
WQI indicate that both pre-monsoon and monsoon periods 
generally support better water quality than the post-
monsoon season, as reflected in higher percentages of 
samples in the ‘Good’ and ‘Excellent’ categories. However, 
the post-monsoon period shows the most degraded 
conditions, likely due to residual nutrient buildup and 
reduced dilution. The higher percentage of ‘Poor’ water 
quality samples (15.38%), suggests localized issues driven 
by nutrient-laden groundwater discharge from monsoon-
recharged aquifers, compounded by reduced flushing and 
stagnant conditions. 
 
These findings highlight the interplay between groundwater 
discharge and surface runoff as critical regulators of lake 
water quality across seasons, calling for strategic monitoring 
and mitigation efforts tailored to post-monsoon conditions. 
The mean WQI values across all seasons further highlight 
the spatial variability in water quality. Station V3 from 
northern part had the lowest mean WQI of 22.9, indicating 
the best water quality among the sampled locations. 
Conversely, station V2 had the highest mean WQI of 62.1, 
reflecting consistent water quality issues. The average WQI 
values for post-monsoon, pre-monsoon and monsoon 
periods were 38.7, 39.2, and 39.7 respectively (Fig. 2).  In a 
study by Singh et al. (2016), ‘Poor’ and ‘Unfit’ category 
samples were observed during the post-monsoon period in 
an urban lake in Bhopal, India. Similarly, high WQI values 
(> 100) indicating low water quality were observed during 
post-monsoon in Hebbal Lake, South India. Higher WQI 
values observed during monsoon are likely the result of 
pollutant influx carried by heavy rainfall, which transports 
contaminants into the lake system. As water levels decline, 
these substances tend to settle and become more 
concentrated. In relatively shallow lakes, the post-monsoon 
period is often marked by sediment disturbance and 
resuspension, which acts as a key internal source of 
contamination (Yin et al., 2024).  

 
In contrast, the pre-monsoon phase is characterized by 
limited surface runoff, a greater influence of groundwater 
inputs, and enhanced natural cleansing mechanisms within 
the lake; all of which contribute to better overall water 
conditions. These findings suggest the need for targeted 
management strategies, especially during dry seasons to 
mitigate nutrient enrichment and preserve water quality. 
 
4.2 Ensemble machine learning and WQI 
 
To enhance the understanding of water quality patterns and 
validate the WQI results, Random Forest, a robust ensemble 
machine learning technique was chosen for its ability to 
handle complex interactions between multiple water quality 
parameters and provide reliable predictions. The study 
involved rigorous preprocessing of a comprehensive dataset 
encompassing critical water quality parameters such as pH, 
electrical conductivity (EC), total dissolved solids (TDS), 
dissolved oxygen (DO) and concentrations of nutrients like 
ammonia, nitrate, and phosphate. The dataset was split into 
training (70%) and testing (30%) sets to ensure unbiased 
evaluation. These parameters served as input features for 
training a Random Forest model, which was meticulously 
optimized through a grid search with cross-validation. This 
approach ensured that hyperparameters, including the 
number of trees (mtry), maximum depth, and minimum 
samples per leaf, were tuned to maximize predictive 
accuracy.  The model’s performance was evaluated using 
metrics like Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and R-squared (R2). Utilizing 5-fold 
cross-validated resampling, the model was systematically 
evaluated across various mtry values, revealing a robust 
performance landscape.  Notably, the model achieved its 
pinnacle with mtry = 2, attaining an impressive accuracy 
with an average Mean Absolute Error (MAE) of 
approximately 2.24 units, Root Mean Squared Error 
(RMSE) of 2.93 units, and a coefficient of determination (R-
squared) of 0.96, indicating robust agreement between 
predicted and observed values across varied environmental 
conditions (Fig. 3).  
 
Furthermore, Cohen’s kappa predicted and observed 
classifications beyond chance, substantiated the model’s 
reliability. Our findings are in line with those of Zhang et 
al., 2024, who also utilized an RF model for optimizing WQI 
predictions, achieving an R2 of 0.98. This high accuracy 
reinforces the effectiveness of RF models in environmental 
monitoring and their capability to handle complex, 
nonlinear interactions in water quality data.The predictive 
capabilities of the model were reflected by its ability to 
forecast higher water quality index values-indicative of 
poorer water quality at specific stations (V2, V7, and V10). 
These predictions aligned closely with actual WQI 
calculations, validating the model’s efficacy in capturing 
real-world variations and trends.  
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Temporal analysis further elucidated seasonal patterns, 
revealing a consistent deterioration in water quality post-
monsoon, alongside modest improvements during pre-
monsoon and monsoon periods. These findings correlated 
well with observed fluctuations in nutrient levels and runoff 
dynamics, emphasizing the model’s robustness in capturing 
complex environmental interactions. 
 
Performance evaluation of the model was further supported 
by metrics such as Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and the coefficient of determination 
(R²), which provided a detailed assessment of predictive 
reliability. For both pre-monsoon and post-monsoon 
periods, the model yielded an MAE of 2.54 and an RMSE 
of 3.32, suggesting a high level of predictive accuracy 
within acceptable error thresholds for water quality 
evaluation. These results demonstrate the model’s 
effectiveness in estimating the WQI while accounting for 
the natural variability associated with water quality 
conditions. During the monsoon season, the RF model 
excelled with high R2 value of 0.96, similar to other seasons, 
but with notably lower MAE of 1.64 and RMSE of 2.16. 
These reduced errors suggested the model’s enhanced 
precision in predicting monsoon WQI values, capturing 
seasonal variations more effectively. Moreover, the high R2 
value highlighted the model’s capability to explain 96% of 
the variance in WQI values, reinforcing its reliability for 
predictive applications. Misclassifications were minimal 
and primarily occurred near category boundaries, where 
WQI values were close to threshold limits. The model’s 
ability to highlight stations with persistently high WQI 
values, such as V2 (northern part of VL), V7 (central part), 
and V10 (southern part), aligns with the manual WQI 
calculations, suggesting these locations require targeted 
management interventions.  
 
The integration of Random Forest based ensemble machine 
learning techniques provided a powerful tool for water 
quality assessment, offering detailed insights and 
reinforcing the empirical findings. A notable advantage of 
the Random Forest (RF) algorithm lies in its capacity to 
evaluate the relative contribution of individual water quality 
parameters. The feature importance analysis generated by 
the RF model offers a reliable means to rank and highlight 
parameters that play a significant role in determining overall 
water quality, thereby aiding in more targeted and effective 
assessments. The feature importance analysis identified 
phosphate and Dissolved oxygen (DO) as the most 
significant predictors, highlighting its crucial role in water 
quality assessment. Certain parameters were found to be 
exhibiting substantial importance, quantified by their 
IncNodePurity values. For instance, phosphate and DO 
emerged as highly influential with IncNodePurity values of 
156.92 and 121.18 respectively (Fig. 4). This highlights the 
crucial role of these parameters in aquatic ecosystems where 
oxygen availability and phosphate loading directly impacts 
biotic communities and biochemical processes. 

 
The prominence of pH with an IncNodePurity of 69.39 
signifies its pivotal role in regulating chemical reactions, 
nutrient availability, and overall water chemistry. Similarly, 
high IncNodePurity values for sodium (66.84), chloride 
(59.48) and TDS (61.20) highlight their significant 
contributions to salinity, ion balance, and pollutant load in 
water bodies, crucial for assessing water quality and 
ecological health. Parameters such as calcium (54.80), and 
hardness (51.62) also demonstrated considerable 
importance, reflecting their roles in nutrient dynamics, 
mineral content, and water hardness, respectively. Their 
elevated IncNodePurity values underscore their influence on 
aquatic habitats and the potential implications for ecosystem 
integrity and water resource management. Alqahtani et al. 
(2022) reported that ensemble learning approaches such as 
RF deliver higher predictive accuracy and consistency in 
estimating water quality parameters, achieving an 
impressive coefficient of determination (R2) of 0.98. This 
performance notably surpasses that of standalone machine 
learning models, including gene expression programming 
(GEP) and artificial neural networks (ANN). Supporting 
this, Sakaa et al. (2022) highlighted the advantages of RF 
over hybrid optimization techniques, emphasizing its 
efficiency, lower computational demand, and suitability for 
cost-effective water quality monitoring, making it a valuable 
tool for advancing sustainable water resource management. 
In another recent research, the efficacy of ensemble learning 
models, particularly Random Forest (RF), was highlighted 
in customizing the water quality index (WQI) to suit specific 
environmental contexts and management needs (Lee et al., 
2023).  
 
However, to reduce overfitting in Random Forest (RF) 
models, optimizing tree depth, increasing minimum samples 
per leaf, conducting careful feature selection to exclude 
irrelevant variables, employing cross-validation, and 
monitoring ensemble size are critical strategies to enhance 
model generalization  and performance (Huang and Boutros, 
2016; Ahmad et al., 2018; Huang et al., 2021; Bakır et al., 
2024). 
 
5. Conclusions 
 
The assessment of water quality in Vellayani Lake revealed 
pronounced seasonal and spatial variability, strongly shaped 
by monsoonal influences. While the monsoon and pre-
monsoon periods exhibited better water quality in general, 
the post-monsoon period stood out due to higher incidence 
of ‘Poor’ water quality based on water quality index (WQI), 
particularly at localized sites. Employing a Random Forest 
based ensemble machine learning model offered reliable 
support for the WQI outcomes. The model achieved a strong 
predictive performance (R² = 0.96), successfully modeling 
the nonlinear relationships among multiple water quality 
parameters. 
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Table 1. Statistical Summary of Physico-chemical Parameters during January, May and July 
 

 
Sl.  
No. 

 
Parameter  

January (Post-monsoon) May (Pre-Monsoon) July (Monsoon) 

Min Max Mean SD Min Max Mean SD Min Max Mean SD 

1 Temp. (0C) 27 29 28.46 0.66 30 32 31.31 0.75 26 27 26.6 0.48 
2 pH 5.7 6.9 6.48 0.33 6.1 6.9 6.6 0.24 6 6.5 6.2 0.18 

3 EC (μS) 127.
5 

132.
4 130.24 1.54 134.9 150.

4 141.85 5.04 124.4 143.3 131.44 4.79 

4 TDS (mg/L) 64.1
4 

68.5
2 66.69 1.34 66.23 71.1

1 69.15 1.41 63 71.77 65.51 2.27 

5 Alkalinity 
(mg/L) 25 35 31.46 3.07 25 40 33.85 5.45 30 38 33.38 2.81 

6 DO (mg/L) 3 8 5.73 1.67 3 7 5.43 0.99 4 8.2 6.18 1.40 

7 Chloride 
(mg/L) 38 55 42.54 4.41 32 46 37.38 3.75 27 39 32.23 3.34 

8 Hardness 
(mg/L) 15 41 28.69 9.26 14 40 26.08 7.79 14 40 25.84 7.30 

9 Calcium 
(mg/L) 4 7.5 5.55 1.11 4 7.5 5.18 1.05 3 6.2 4.56 1.01 

10 Magnesium 
(mg/L) 2.4 8.6 5.62 2.17 2.4 8.3 5.09 1.76 3 7.3 4.50 1.33 

11 Sodium 
(mg/L) 13.6 18.4 16.85 1.20 12.4 17.2 15.67 1.31 11.4 16.7 14.68 1.37 

12 Potassium 
(mg/L) 2.5 4.5 3.16 0.53 2.5 4 3.26 0.39 2 4 3.00 0.61 

13 Ammonia 
(mg/L) 0.04 0.31 0.11 0.09 0.04 0.31 0.11 0.08 0.03 0.94 0.23 0.32 

14 Nitrate 
(mg/L) 1.03 1.12 1.06 0.03 1.03 1.12 1.06 0.02 0.93 1.03 0.98 0.03 

15 Phosphates 
(mg/L) 0.04 0.4 0.151 0.09 0.04 0.4 0.15 0.09 0.03 0.99 0.34 0.36 

 
 

Table 2. Assigned Weights and Relative Weights of 
Parameters for Water Quality Index 

 
Parameter Assigned 

Weights 
Relative 
Weights 

pH 2.7 0.069 
TDS 3 0.077 
EC 3.5 0.089 
Alkalinity 3 0.077 
DO 4 0.102 
Chloride 3 0.077 
Hardness 3 0.077 
Calcium 3 0.077 
Magnesium 3 0.077 
Sodium 3 0.077 
Potassium 1 0.026 
Ammonia 1 0.026 
Nitrate 1 0.026 
Phosphate 5 0.128 

         
 
 

Table 3. Calculated Water Quality Index (WQI) values for 
various seasons 
 

Site Post-
Monsoon 

Pre-
Monsoon 

Monsoon Mean 
WQI 

V1 24.12 30.46 29.79 28.12 
V2 60.12 63.79 62.46 62.12 
V3 20.79 22.35 25.68 22.94 
V4 32.79 33.46 34.68 33.64 
V5 25.57 22.68 23.46 23.9 
V6 40.68 45.12 50.79 45.53 
V7 70.23 60.46 50.12 60.27 
V8 37.46 34.79 33.46 35.23 
V9 28.35 30.68 32.12 30.38 
V10 55.68 60.35 62.79 59.6 
V11 35.79 36.12 40.57 37.49 
V12 35.79 38.23 37.57 37.2 
V13 35.46 31.79 32.35 33.2 
Min 20.79 22.35 23.46 22.94 
Max 70.23 63.79 62.79 62.12 
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Fig. 2 Heat map of WQI — surface water samples, Vellayani Lake 

 
 

 
Fig. 3 Observed values vs. Predicted values for RF model 
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Fig. 4 Feature Importance Plot for Water Quality Parameters based on RF Model 

 
Key influencing factors such as phosphate, dissolved 
oxygen, electrical conductivity, and total dissolved solids 
were identified, consistent with observed field data. The 
model’s predictions of higher WQI values at stations V2 
(northern part of VL), V7 (central), and V10 (southern part) 
corroborated the manual calculations, highlighting areas 
with persistent water quality issues. By combining 
conventional WQI assessment with machine learning 
validation, the study delivered an integrated perspective on 
water quality dynamics in Vellayani freshwater Lake. It 
highlighted specific periods and hotspots that warrant 
targeted management efforts to address nutrient loading and 
water quality deterioration. These findings reinforce the 
need for sustained monitoring and the use of advanced 
analytical approaches to support the long-term sustainability 
of freshwater ecosystems. 
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